一刻工坊 (YiKe) - Complete LLM Context Document
Purpose: This document provides comprehensive context for Large Language Models to understand, analyze, and assist with the YiKe platform. Version: 1.0 | Updated: 2025-12-22
1. Product Overview
1.1 What is YiKe (一刻工坊)?
One-sentence definition: YiKe is an AI-native full-process content creation platform that helps creators achieve intelligent efficiency gains from inspiration collection to video publishing.
Core Value Proposition:
- End-to-end Workflow: Inspiration → Script → Asset Generation → Video Production → Publishing
- Multi-modal Fusion: Integrates text, image, audio (Suno/Fish Audio), and video (ComfyUI/Jianying) generation
- Low-barrier Creation: Provides guided paths for beginner content creators
1.2 Brand Hierarchy
| Layer | Name | Definition | Usage Context |
|---|---|---|---|
| Product Brand | 一刻工坊 (YiKe) | User-facing SaaS platform | UI, marketing, sales |
| Business Entity | 趣美丽 (QuMeiLi) | MCN operations & commercial entity | Contracts, billing |
| Tech Core | 刻流星 (KeLiuXing) | AI scheduling engine codename | Architecture docs, APIs |
1.3 Target Users
- Beginner Creators: Have ideas but lack editing/scripting skills, need "step-by-step" guidance
- Batch Content Operators: Manage multiple accounts, require assembly-line content production
- Enterprise Marketing Teams: Need scalable video content for campaigns
2. System Architecture
2.1 Technology Stack
┌─────────────────────────────────────────────────────────────┐
│ CLIENT LAYER │
├─────────────────┬─────────────────┬────────────────────────┤
│ Web Browser │ Electron App │ Mini Program │
│ (Vue 3) │ (Desktop) │ (UniApp/WeChat) │
└────────┬────────┴────────┬────────┴───────────┬────────────┘
│ │ │
▼ ▼ ▼
┌─────────────────────────────────────────────────────────────┐
│ API GATEWAY LAYER │
│ Node.js + Express + JWT Authentication │
└────────────────────────────┬────────────────────────────────┘
│
┌───────────────────┼───────────────────┐
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────────┐
│ Business Logic │ │ AI Agent Layer │ │ External Adapters │
│ (Task Manager, │ │ (LangGraph │ │ (Suno, Fish Audio, │
│ Asset Manager) │ │ Python) │ │ ComfyUI, Jianying)│
└────────┬────────┘ └────────┬────────┘ └──────────┬──────────┘
│ │ │
▼ ▼ ▼
┌─────────────────────────────────────────────────────────────┐
│ INFRASTRUCTURE LAYER │
│ PostgreSQL │ Redis │ Object Storage (MinIO/S3) │ MQ │
└─────────────────────────────────────────────────────────────┘2.2 Core Components
| Component | Technology | Responsibility |
|---|---|---|
| Frontend | Vue 3 + Vite + Element Plus | User interface, real-time updates |
| Backend API | Node.js + Express + Sequelize | Business logic, data management |
| AI Agents | Python + LangGraph | Complex AI workflows (Strategy, Music, Video) |
| Workflow Engines | Flowise, N8N | Visual workflow orchestration |
| Media Processing | FFmpeg, ComfyUI | Audio/video transformation |
3. Core Modules (User-Facing)
3.1 Content Pool (灵感广场)
Purpose: Unified entry point for all content assets
Sub-modules:
- All Content: Aggregated view of all resources
- Inspiration Notes (灵感笔记):
- Entity:
UserCorpus - Sources: External links (Douyin, Xiaohongshu, Bilibili), manual input
- Features: AI tagging, transcript extraction, script analysis
- Entity:
- Media Materials (媒体素材):
- Entity:
UnifiedAsset - Types: Video, image, audio files
- Sources: Local upload, link extraction, mobile sync
- Entity:
Key API Endpoints:
POST /api/inspiration/parse-link # Parse external video URL
GET /api/corpus # List inspiration notes
GET /api/materials # List media materials
POST /api/materials/upload # Upload local files3.2 Strategy Console (策划控制台)
Purpose: The "central kitchen" for content production planning
Three-Step Workflow:
- View Inspiration: Preview collected video/images with metadata
- Script Rewriting: AI-assisted script generation with "Original vs AI" comparison
- Dispatch Production: Convert script to shooting task or AI auto-generation
Key Features:
- Style presets: Professional, Friendly, Viral
- AI rewrite with knowledge base context (RAG)
- One-click task dispatch to mobile app or AI engine
3.3 Project Console (项目控制台)
Purpose: Visual task and workflow management center
Features:
- Kanban view: Todo → In Progress → Completed
- Task entity links to Project and Assets
- Real-time status sync via WebSocket
- Version history and rollback
Key Entities:
Project: { id, name, status, workflow_preset_id }
Task: { id, project_id, type, status, input_params, output_data }3.4 Knowledge Center (知识库)
Purpose: Private knowledge base for RAG-enhanced AI generation
Features:
- Document upload: PDF, Word, Markdown
- Automatic chunking and vectorization
- Search Lab: Test retrieval before production use
- AI Q&A with forced citation
Key Entities:
KnowledgeDocument: { id, filename, status, chunk_count }
KnowledgeChunk: { id, document_id, content, embedding }3.5 Workflow Marketplace (工作流市场)
Purpose: Template library for AI automation workflows
Supported Engines:
- Flowise (visual LLM chains)
- N8N (automation workflows)
- LangGraph (complex agent orchestration)
- ComfyUI (image/video generation)
4. Data Models
4.1 Core Entities
| Entity | Table | Key Fields | Relationships |
|---|---|---|---|
| User | users | id, email, role | 1:N Projects, Assets |
| Project | projects | id, name, status, workflow_preset_id | 1:N Tasks |
| Task | tasks | id, project_id, type, status, input_params | N:1 Project, 1:N Assets |
| UserCorpus | user_corpora | id, content, source_url, tags | N:N Assets |
| UnifiedAsset | unified_assets | id, file_path, file_type, metadata | N:1 Task |
| KnowledgeDocument | knowledge_documents | id, filename, status | 1:N Chunks |
4.2 Task Status Machine
[PENDING] → [QUEUED] → [RUNNING] → [SUCCESS]
↓ ↓
[CANCELLED] [FAILED]
↓ (retry)
[QUEUED]5. External Integrations
5.1 AI Services
| Service | Purpose | Integration Method |
|---|---|---|
| OpenAI/LLM | Text generation, analysis | API Key |
| Suno | Music generation | Cookie-based auth |
| Fish Audio | Text-to-Speech | API Token |
| ComfyUI | Image/video generation | WebSocket + REST |
5.2 Local Tools
| Tool | Purpose | Integration Method |
|---|---|---|
| Jianying (剪映) | Video editing draft export | File system (draft_content.json) |
| FFmpeg | Media transcoding | CLI subprocess |
6. API Reference (Key Endpoints)
Content Operations
# Inspiration
POST /api/inspiration/parse-link # Parse external URL
GET /api/corpus # List inspirations
POST /api/corpus # Create inspiration
# Materials
GET /api/materials # List materials
POST /api/materials/upload # Upload file
POST /api/materials/batch-delete # Batch delete
# Strategy
POST /api/strategy/rewrite # AI script rewriting
POST /api/strategy/dispatch # Create task from scriptProject & Task
GET /api/projects # List projects
POST /api/projects # Create project
GET /api/projects/:id/tasks # Get project tasks
POST /api/project/dispatch-task # Dispatch new taskKnowledge
POST /api/knowledge/upload # Upload document
GET /api/knowledge/search # RAG search
POST /api/knowledge/ask # AI Q&A with citations7. Glossary
| Term (CN) | Term (EN) | Definition |
|---|---|---|
| 一刻工坊 | YiKe | Product brand name |
| 灵感广场 | Content Pool | Asset management module |
| 灵感笔记 | Inspiration Notes | Text/link-based content (UserCorpus) |
| 媒体素材 | Media Materials | File-based assets (UnifiedAsset) |
| 策划控制台 | Strategy Console | Content planning interface |
| 二创脚本 | Derivative Script | AI-rewritten script |
| 项目 | Project | Top-level work container |
| 任务 | Task | Executable work unit |
| 知识库 | Knowledge Base | RAG document store |
| 工作流 | Workflow | Automated pipeline |
| 智能体 | Agent | AI module with specific function |
| 刻流星 | KeLiuXing | AI engine codename |
8. Documentation Links
| Document | Path | Purpose |
|---|---|---|
| Product Book | /product_book/ | Full product documentation |
| Tech Whitepaper | /tech_whitepaper/ | Architecture deep dive |
| User Manual | /user_manual/ | End-user guide |
| Deployment Guide | /deployment_guide/ | Production setup |
| Business Deck | /business_deck/ | Commercial proposal |
| SSOT | /_source_of_truth/ | Single source of truth |
9. Quick Reference for LLM Assistance
When asked about:
- Product features → Reference Section 3 (Core Modules)
- Technical architecture → Reference Section 2 (System Architecture)
- Data models → Reference Section 4 (Data Models)
- API usage → Reference Section 6 (API Reference)
- Terminology → Reference Section 7 (Glossary)
Common Tasks:
- Generate content script: Use Strategy Console workflow
- Batch process materials: Use Content Pool + Workflow Marketplace
- Deploy to production: Follow Deployment Guide
- Integrate new AI service: Add adapter in Engine Adapter Layer
End of LLM Context Document